

Tetrahedron 57 (2001) 1801-1812

On the effect of ring substituents in the carbonylation of aziridines

Paolo Davoli, Arrigo Forni, Irene Moretti, Fabio Prati^{*} and Giovanni Torre

Dipartimento di Chimica, Università di Modena e Reggio Emilia, Via Campi 183, 41100 Modena, Italy

Received 26 September 2000; revised 20 November 2000; accepted 7 December 2000

Abstract—The effect of ring substituents on the cobalt carbonyl-catalyzed carbonylation of functionalized aziridines to β -lactams has been investigated. A variety of aziridines with different substituents and stereochemistry has been synthesized and subjected to carbonylation. The ring expansion to β -lactam takes place in the absence of an electron-withdrawing substituent and higher yields are always obtained for cis-aziridines. Moreover, the regioselectivity of the reaction is affected by the nature of substituents at ring carbon atoms. $© 2001$ Elsevier Science Ltd. All rights reserved.

1. Introduction

Cobalt carbonyl-catalyzed carbonylative ring expansion of aziridines has proved to be a versatile reaction for the stereospecific synthesis of β -lactams in excellent yields.^{1,2} The reaction proceeds through nucleophilic ring opening of the aziridine by the in situ-generated tetracarbonylcobaltate anion $[Co(CO)_4]$ ⁻, followed by CO insertion and final ring closure to β -lactam. The reaction is reported to proceed via a S_N 2-like mechanism with inversion of configuration at the stereocenter which undergoes CO insertion and shows stereospecificity and high regioselectivity: from *cis-aziri*dines trans- β -lactams are obtained, whereas cis- β -lactams are isolated from *trans*-aziridines.^{1,2}

Previous results have shown that substituents at the aziridine ring carbon atoms, as well as at nitrogen, have a strong effect on the Co-catalyzed carbonylation reaction.² More recently, with the aim of obtaining appropriate functionalized β lactams, we applied this procedure to 2-alkoxycarbonylaziridines and 2-hydroxymethylaziridines, obtaining the corresponding β -lactams only from the latter.¹

These results prompted us to investigate in greater detail the effect of ring substituents on the Co-catalyzed carbonylation of functionalized aziridines: for this purpose a range of aziridines bearing appropriate substituents on the ring carbon atoms as well as on the ring nitrogen atom were synthesized and subjected to carbonylation.

2. Results and discussion

2.1. Synthesis of aziridines

Aziridines $3a-e$, $4b,d$, $5d$ and $6d$ were synthesized from the parent N -benzyl-2-alkoxycarbonylaziridines $1a-e$ following the procedure already described for 1b and reported in Scheme $1¹$ Aziridines **1a**-e were obtained by benzylamine aminative cyclization of the dibromoderivatives prepared by bromine addition to the appropriate commercially available α, β -unsaturated esters. Aziridines **1b**-d were obtained as a mixture of cis/trans isomers and aziridine 1e as the only *trans* isomer. Reduction of $1a-e$ with lithium aluminium hydride afforded the corresponding hydroxymethyl derivatives $2a-e$, which were protected as TBDMS-ethers $3a-e$ or as acetyl esters cis-4b,d by treatment with tert-butyldimethylsilylchloride (TBDMSCl) or by esterification with acetic acid in the presence of dicyclohexylcarbodiimide (DCC) and 4-(dimethylamino)pyridine (DMAP), respectively. Amidation of cis-1d with aqueous ammonia, followed by reduction with lithium aluminium hydride in THF, afforded the corresponding 2-aminomethyl derivative cis-5d. Reduction of aziridine cis-1d with DIBAL-H at -78° C yielded the corresponding 2-formylderivative *cis-*6d.

N-Benzyl-2-acetyl-3-phenylaziridine 7d was synthesized in analogy with aziridine 1d, by bromination of commercially available 4-phenyl-3-buten-2-one, followed by aminative cyclization.

Symmetric N-benzyl-2,3-bis-(tert-butyldimethylsilyloxy) methylaziridine (cis-3f) was obtained by treating the corresponding N-H aziridine 8, synthesized as described in the literature,³ with benzyl bromide and potassium carbonate in refluxing acetonitrile (Scheme 2).

Keywords: aziridines; β -lactams; carbonylation; cobalt.
* Corresponding author. Tel.: +39-59-2055056; fax: +39-59-373543; e-mail: prati.fabio@unimo.it

^{0040-4020/01/\$ -} see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(00)01152-2

Scheme 1. (i) LiAlH₄, THF; (ii) TBDMSCl, DMAP, CH₂Cl₂; (iii) HOAc, DCC, DMAP, CH₂Cl₂; (iv) aq NH₃; (v) LiAlH₄, THF; (vi) DIBAL-H, CH₂Cl₂.

Scheme 2. (i) PhCH₂Br, K₂CO₃, CH₃CN (81%).

2-(tert-Butyldimethylsilyloxy)methyl-3-phenylaziridine⁴ (cis-11) was synthesized starting from 2-methoxycarbonyl-3-phenylaziridine (cis-9), prepared by aminative cyclization of methyl 2,3-dibromo-3-phenylpropanoate with ammonia. Reduction of cis -9 with LiAlH₄ gave aziridine 10 which was protected as TBDMS-ether 11 by treatment with tert-butyldimethylsilylchloride. N-Acetyl derivative cis-12 was obtained by reaction of 11 with acetyl chloride and triethylamine. Treatment of N-H aziridine 11 with ethyl bromoacetate afforded aziridine cis-13 (Scheme 3).

Spectroscopic data of compounds $1-13$ were in close agreement with the structures. The relative cis/trans stereochemistry was assigned on the basis of ¹H NMR spectral analysis $({}^3J_{\text{H},\text{Heis}} > {}^3J_{\text{H},\text{Htrans}}$).⁵ Moreover, ¹H NMR spectra of *trans*-aziridines $1(b-d)-3(b-d)$, in particular, showed the presence of two invertomers at nitrogen, due to slow nitrogen inversion on the NMR scale.⁶

2.2. Carbonylation of aziridines

Following a well-established protocol, $\frac{1}{1}$ aziridines were dissolved in freshly distilled and oxygen-free anhydrous 1,2-dimethoxyethane (DME) and treated with carbon monoxide (500 psi) and $Co_2(CO)_8$ for 14 h at 100°C in a stainless steel pressure vessel, using a 12:1 ratio of aziridine/ catalyst. After removal of the catalyst by filtration on silica gel, the crude residue was purified by column chromatography. When the carbonyl insertion occurred into both the two ring carbon-nitrogen bonds, two regioisomers were isolated.

Carbonyl insertion was confirmed by ${}^{13}C$ NMR spectroscopy, with the carbonyl carbon occurring at $168-$ 171 ppm. The relative stereochemistry of β -lactam regioisomers was determined by ¹H NMR spectroscopy $({}^3J_{\text{H},\text{Heis}} > {}^3J_{\text{H},\text{Htrans}}$) and the ring substitution pattern was assigned according to the cross-cleavage MS fragmentation.¹ The spectroscopic data of compounds $14-23$ were in close agreement with the structures.

2.3. Carbonylation of aziridines 3a-f: effect of substituent at C_3 ring carbon atom

Carbonylation of N-benzyl-2-(tert-butyldimethylsilyloxy) methylaziridine 3a and 3-phenyl substituted aziridine 3d afforded solely one β -lactam, 14a and 14d, respectively, while carbonylation of 3-alkyl substituted aziridines 3b,c gave two β -lactam regioisomers 14b,c and 15b,c, the former being significantly predominant. All attempts at carbonylation of trans-3e failed, whereas aziridine cis-3f, which does not present any problem in terms of regiospecificity, afforded stereospecifically β -lactam trans-14f. The results are shown in Table 1.

As already observed for $3b$,¹ the carbonylation reaction on

Scheme 3. (i) LiAlH₄, THF (68%); (ii) TBDMSCl, DMAP, THF (97%); (iii) AcCl, NEt₃, CH₂Cl₂ (85%); (iv) BrCH₂COOEt, K₂CO₃, CH₃CN (52%).

Table 1. Carbonylation of aziridines 3a-f

^a From Ref. 1.

aziridines $3a-f$ is stereospecific: from *cis* aziridines *trans* b-lactams are obtained, whereas cis b-lactams are isolated from *trans* aziridines.

Moreover, carbonylation reactions show regioselectivity regardless of the relative stereochemistry of the aziridine ring: (i) for aziridines 3a and 3d, CO insertion occurs exclusively into the ring C_3 carbon–nitrogen bond, affording only one β -lactam regioisomer, 14a and 14d, respectively; (ii) for aziridines $3b$ and $3c$ on the other hand two β -lactam regioisomers are obtained, namely 14b,c and 15b,c. Their relative ratio shows, yet again, the preferential carbonyl insertion into the alkyl-bearing ring C_3 carbon–nitrogen bond (regioisomer 14) rather than into the O-protected hydroxymethyl-bearing ring C_2 carbon-nitrogen bond (regioisomer 15). These results indicate that the regioselectivity of carbonylation is driven by electronic and steric effects: CO insertion occurs preferentially on the ring carbon atom displaying the higher electrophilic character or the lower steric hindrance. For aziridines 3a,d, bearing a primary or a benzylic ring C_2 atom, respectively, the electronic effects seem to predominate and only one β -lactam regioisomer is obtained. In the case of aziridines 3b,c, having both ring-C atoms as secondary carbons, CO insertion occurs on both nitrogen-carbon ring bonds, with preferential insertion on the less sterically hindered $N-C_3$ bond. In particular, higher regioselectivity $(Me>Et)$ is observed in relation to a lesser steric hindrance of the substituent. Nevertheless, sterically hindered symmetric aziridine cis-3f gives carbonylation in very high yield.

With regard to the relative ring stereochemistry, the carbonylation of *cis*-aziridines **3b**, c displays higher regioselectivity and affords remarkably higher yields by comparison with the corresponding *trans* derivatives.

2.4. Carbonylation of aziridines 2b-4b and 1d-7d: effect of substituent at C_2 ring carbon atom

Previous results showed that aziridine 1b, characterized by

the presence of an alkoxycarbonyl group on the ring, gave preferential elimination to an α , β -unsaturated system instead of CO insertion, while aziridine 3b, bearing a silylated 2-hydroxymethyl group, was successfully carbonylated.¹ These results led us to investigate more thoroughly the compatibility of the carbonylation reaction with the nature of substituents at C_2 ring carbon atom for Nbenzyl-3-phenylaziridines, taking into account the high regio- and stereospecificity observed in the case of aziridines 3d (Table 1). Functional groups at C_2 , such as a carboxylate group (1d), a formyl (6d), an acetyl (7d) or an aminomethyl (5d) as well as a free or protected hydroxymethyl group (2d-4d) were chosen. The results of carbonylation reactions for 3-phenylderivatives 1d-7d are reported in Table 2 and compared with derivative 3d.

As already observed for aziridine cis -1b,¹ the presence of a carboxylate or a carbonyl group directly linked to the aziridine ring C_2 carbon atom in compounds 1d, 6d and 7d is detrimental for carbonylation and no β -lactams are recovered from the reaction mixture.

Table 2. Carbonylation of aziridines 1d-7d

^a Relative ratio between the regioisomers (14b/15b or 20/21).

^b From Ref. 1.

^c The product of the carbonylation reaction is the *trans* lactone 4-benzylamino-3-methyltetrahydrofuran-2-one (22) in 64% yield.

Carbonylation of unprotected hydroxymethylaziridine cis-2d as well as its acetate ester *cis*-4d proceeded stereo- and regiospecifically, affording only one β -lactam, *trans*-16 and trans-17, respectively, in high yields: CO insertion occurs exclusively on the C_3-N bond as observed for the O-TBDMS analogue *cis*-3d. Carbonylation of *cis*-4d, affording β -lactam 17, underlines the compatibility of a carbonyl group as substituent when isolated from the ring system.

Furthermore, N-benzyl-2-aminomethyl-3-phenylaziridine $(cis-5d)$ gave regio- and stereospecific carbonylation, yielding $trans- β -lactam 18 in good yield.$

Surprisingly, when moving to trans-hydroxymethylaziridines, carbonylation of free aziridine trans-2d did not occur, whereas the corresponding protected trans-3d was carbonylated albeit in low yield.

The influence of the hydroxymethyl group protection was evaluated also for the 3-methyl analogues $2b-4b$. The results of carbonylation reactions are collected in Table 3.

Aziridine cis-2b, bearing a free hydroxymethyl group on the C_2 ring carbon atom, and its acetate ester *cis*-4b were successfully and stereospecifically carbonylated to β -lactams, as already observed for the corresponding O-TBDMS derivative 3b (Table 3). Carbonylation of acetyl derivative cis -4b affords two β -lactam regioisomers trans-20 and trans-21 in good yield and without affecting regioselectivity, when compared with the OTBDMS analogue cis-3b.

Interestingly, unlike derivatives cis-3b and 4b, carbonylation of unprotected hydroxymethyl aziridine cis-2b is regiospecific, yielding only one β -lactam *trans*-19, indicative of CO insertion exclusively on the C_3-N bond. This result seems to suggest the presence of an intramolecular hydrogen bond between the hydroxy group and the nitrogen, favouring for CO insertion and thus for regiospecificity. Carbonylation of the *trans* isomer 2b on the other hand, proceeds to the stereo- and regioselective formation of trans-lactone 4-benzylamino-3-methyltetrahydrofuran-2-one (22) in good yield. The structure and trans stereochemistry of lactone 22 was confirmed by NOESY and COSY NMR spectroscopy. By assuming the same mechanism reported for carbonylation to β -lactams,¹ lactone formation could be explained through the initial $[Co(CO)₄]$ ⁻ nucleophilic opening of the aziridine ring followed by CO insertion into the $Co-C_3$ bond. The cyclization to the five-membered lactone 22 indicates the nucleophilic attack of alcoholic oxygen on the carbonyl through a proton migration from O to N, promoted by an intramolecular hydrogen bond (Scheme 4).

2.5. Carbonylation of aziridines $cis-11-13$: effect of substituent at the ring nitrogen atom

Since cis-N-benzyl-2-(tert-butyldimethylsilyloxy)methyl-3 phenylaziridine 3d gave the best results in terms of regioand stereoselectivity, as reported above, N-H, N-acetyl and N -(ethoxycarbonyl)methyl aziridines, cis -11–13, respectively, were chosen and subjected to the carbonylation conditions in order to investigate the influence of substituents at the ring nitrogen atom. The results are reported in Table 4 and compared with derivative cis-3d.

The nature of the substituent on ring nitrogen is significant for carbonylation. N-unsubstituted aziridine cis-11, as well as N-acetylaziridine cis-12, did not show any reactivity: no b-lactams were recovered, only the unreacted aziridines. In the case of cis-12, the presence of an acetyl group on nitrogen, which is known to increase the reactivity towards

nucleophiles, $\frac{7}{7}$ decreases the basicity with respect to *cis*-3d: the basicity of the ring nitrogen atom is reported to play an important role in the formation of the $[Co(CO)_4]$ ⁻ anion, as well as in the ring closure of the nucleophilic ring-opening intermediate to β -lactam.²

More interesting is the carbonylation of aziridine *cis*-13: $trans- β -lactam 23, bearing a carboxymethyl group on nitro$ gen, a typical substituent in the framework of several β lactam antibiotics, 8 was regio- and stereospecifically obtained in good chemical yield.

3. Conclusions

These results broaden the range of aziridines that can be used as substrates for the cobalt carbonyl-catalyzed carbonylation, thus making available a variety of functionalized β -lactams that might be used as suitable precursors of antibiotic drugs.

Even though the presence of electron-withdrawing substituents on ring carbon atoms, such as a trifluoromethyl or an alkoxycarbonyl group, proved incompatible with carbonylation, a hydroxymethyl (protected or unprotected) and an aminomethyl group as ring carbon substituents, as well as an alkoxycarbonylmethyl group on the ring nitrogen allowed us to perform the carbonylative ring-expansion to β -lactams, whilst at the same time retaining the possibility of a further reactivity on the ring substituents.

4. Experimental

4.1. General procedure

¹H and ¹³C NMR spectra were recorded in CDCl₃ solution on a Bruker DPX-200 MHz and a Bruker AMQ 400 MHz spectrometers; chemical shifts are reported in δ values from TMS as internal standard; coupling constants (J) are given in Hz. For mass spectral determinations a Finnigan MAT SSQ A mass spectrometer was used (EI, 70 eV). Elemental analyses were performed with a Carlo Erba Elemental Analyzer 1110. All organic solvents were dried and distilled by standard methods prior to use and all reactions were carried out using oven-dried glassware. Chromatographic purification of compounds was performed on silica gel (particle size $0.05-0.20$ mm). The metal catalyst $Co₂(CO)₈$ was purchased from Merck.

The syntheses of compounds *cis*- and *trans*-1b-3b, *cis*- and $trans-9b$, 10b are described elsewhere.¹ Trifluorinated aziridine *trans*-1e was prepared from the corresponding dibromo derivative as reported in the literature.⁹ Compound 8 was synthesized following the procedure already described.3

4.1.1. 1-Benzyl-2-methoxycarbonylaziridine $(1a)$.¹⁰ A solution of commercial methyl 2,3-dibromopropanoate (2.6 mL, 20.48 mmol) in methanol (50 mL) was slowly added dropwise at 0° C to a stirred solution of benzylamine (7.83 mL, 71.68 mmol) in methanol (100 mL) and left to warm to rt overnight. The reaction mixture was rotary evaporated, diluted with ether (100 mL), washed with water (200 mL) and the aqueous phase extracted with ethyl ether $(3\times50 \text{ mL})$. The combined organic phases were dried $(MgSO₄)$, concentrated in vacuo and chromatographed (ethyl ether/light petroleum 60:40) to afford 1a as a pale yellow liquid (3.30 g, 84% yield), which was used without further purification. ¹H NMR (200 MHz): δ 1.74 (1H, dd, $J=1.0$, 6.5 Hz, CH₂), 2.20 (1H, dd, $J=3.0$, 6.5 Hz, CH₂), 2.26 (1H, dd, $J=1.0$, 3.0 Hz, CHCOOMe), 3.54 (2H, s, CH₂Ph), 3.71 (3H, s, COOCH₃), 7.20-7.40 (5H, m, aromatic). MS, m/z : 191 (2, M⁺), 190 (18), 176 (20), 132 (50), 104 (26), 91 (100), 65 (21%).

4.1.2. cis- and trans-1-Benzyl-3-ethyl-2-methoxycarbonylaziridine (1c). Methyl 2,3-dibromopentanoate (7.65 g, 27.94 mmol), prepared by bromination of methyl trans-2 pentenoate¹¹ in CCl₄ at rt, was dissolved in methanol (70 mL) and slowly added at 0° C to a stirred solution of benzylamine (12.6 mL, 115.35 mmol) in methanol (200 mL). The reaction mixture was stirred overnight, leaving to warm to rt. After rotary evaporation of the solvent, the residue was dissolved in ethyl ether (180 mL), washed with water (360 mL) and the aqueous phase extracted with ethyl ether $(3\times90 \text{ mL})$. The combined organic phases were dried (MgSO4) and concentrated to give a crude brown-yellowish oil which was chromatographed on $SiO₂$ (light petroleum/ ethyl ether 80:20 and then $60:40$ to afford aziridine *cis*-1c (4.02 g) and aziridine *trans*-1c (1.81 g) , both as yellowish oils, in a 69:31 ratio and in 95% total yield. Aziridine cis-1c was further purified by in vacuo distillation on a Vigreux column: colourless oil, bp 102° C (0.6 mm Hg). ¹H NMR spectroscopy showed compound trans-1c as a 72:28 mixture of two invertomers at nitrogen, due to slow nitrogen inversion on the NMR scale.

cis-1c. ¹H NMR (200 MHz): δ 0.88 (3H, t, J=7.5 Hz, CH_3CH_2), 1.39-1.77 (2H, m, CH_3CH_2), 1.87 (1H, q, $J=6.5$ Hz, CH₃CH₂CH₁, 2.26 (1H, d, $J=6.5$ Hz, CHCOOCH₃), 3.53 (1H, d, J=13.5 Hz, CH₂Ph), 3.62 (1H, d, $J=13.5$ Hz, CH_2Ph), 3.72 (3H, s, COOCH₃), 7.22–7.36 (5H, m, aromatic). MS, m/z : 219 (6, M⁺), 204 (1), 190 (1), 160 (21), 146 (3), 131 (3), 128 (2), 91 (100), 68 (8), 65 (13%). Anal. Calcd for $C_{13}H_{17}NO_2$: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.02; H, 7.98; N, 6.45.

trans-1c. ¹H NMR (400 MHz): major invertomer: δ 0.87 $(3H, t, J=7.5 Hz, CH₃CH₂), 1.38–1.59 (2H, m, CH₃CH₂),$ 2.27 (1H, dt, $J=2.5$, 6.0 Hz, CH₃CH₂CH₁, 2.51 (1H, d, $J=2.5$ Hz, CHCOOCH₃), 3.69 (3H, s, COOCH₃), 3.91 (1H, d, $J=13.5$ Hz, CH_2Ph), 3.99 (1H, d, $J=13.5$ Hz, CH₂Ph), 7.29–7.41 (5H, m, aromatic); minor invertomer: δ 1.09 (3H, t, J=7.5 Hz, CH₃CH₂), 1.59–1.83 (2H, m, CH_3CH_2), 2.05 (1H, m, CH_3CH_2CH), 2.49 (1H, m, $CHCOOCH₃$), 3.72 (3H, s, COOCH₃), 3.65 (1H, d, $J=14.0$ Hz, CH_2Ph , 3.92 (1H, d, $J=14.0$ Hz, CH_2Ph), 7.22–7.29 (5H, m, aromatic). MS, m/z : 219 (6, M⁺), 204 (1), 190 (1), 160 (21), 146 (3), 131 (3), 128 (2), 91 (100), 68 (8), 65 (13%). Anal. Calcd for $C_{13}H_{17}NO_2$: C, 71.21; H, 7.81; N, 6.39. Found: C, 70.97; H, 8.05; N, 6.55.

4.1.3. cis- and trans-1-Benzyl-2-methoxycarbonyl-3 phenylaziridine (1d). Benzylamine (3.56 mL, 32.59 mmol) was added dropwise at 0° C to a stirred solution of methyl 2,3dibromo-3-phenylpropanoate¹² (3 g, 9.32 mmol) in methanol (120 mL). After 9 days the reaction mixture was rotary evaporated, the residue dissolved in water (110 mL) and extracted with ethyl ether $(3\times50 \text{ mL})$. The combined organic phases were dried $(MgSO₄)$, concentrated in vacuo and chromatographed on $SiO₂$ (light petroleum/ethyl ether 80:20 and finally 50:50) to afford aziridine *cis*-1d (white solid, 1.70 g) and aziridine trans-1d (light yellow viscous liquid, 493 mg) in a 78:22 ratio and in 88% total yield. By crystallization from CH_2Cl_2/n -pentane, aziridine *cis*-1d was obtained as white crystals, mp 64-68°C. ¹H NMR spectroscopy showed broad and poorly resolved signals for aziridine trans-1d, indicating the presence of two invertomers at nitrogen.

cis-1d. ¹H NMR (200 MHz): δ 2.69 (1H, d, J=7.0 Hz, CHCOOMe), 3.11 (1H, d, $J=7.0$ Hz, PhCH), 3.52 (3H, s, COOCH₃), 3.71 (1H, d, J=13.5 Hz, CH₂Ph), 3.97 (1H, d, $J=13.5$ Hz, CH₂Ph), $7.20-7.51$ (10H, m, aromatic). MS, m/z: 267 (2, M⁺), 266 (4), 236 (3), 208 (3), 176 (75), 144 (18), 117 (42), 116 (100), 91 (51), 77 (15), 65 (16%). Anal. Calcd for $C_{17}H_{17}NO_2$: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.21; H, 6.32; N, 5.15.

trans-1d. ¹H NMR (200 MHz): δ 2.87 (1H, br d, J=2.0 Hz, CHCOOMe), 3.41 (1H, br s, PhCH), 3.77 (3H, br s, COOCH₃), 4.17 (1H, br d, J=14.0 Hz, CH₂Ph), 4.34 (1H, d, $J=14.0$ Hz, $CH₂Ph$), 7.29–7.47 (10H, m, aromatic). MS, m/z: 267 $(2, M^+), 266$ (5), 236 (3), 208 (2), 176 (75), 144 (18), 116 (100), 91 (56), 77 (15), 65 (17%). Anal. Calcd for $C_{17}H_{17}NO_2$: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.02; H, 6.67; N, 5.09.

4.2. Synthesis of hydroxymethyl aziridines 2a,c-e. General procedure

A 1.0 M LiAlH₄ solution in THF (2 mmol) was slowly added dropwise through a dropping funnel to a stirred solution of aziridines $1a,c-e$ (1 mmol) in freshly distilled anhydrous THF (5 mL) at room temperature, under nitrogen flow (for aziridine 1a the reaction was carried out at -40° C to avoid ring opening). When TLC analysis showed total disappearance of the starting material, the reaction mixture was cooled to 0° C and carefully quenched by dropwise addition of water (100 μ L), followed by an aqueous 0.15N NaOH solution (100 μ L). The white inorganic precipitate was filtered off and washed with abundant ethyl ether: the filtrate was dried $(MgSO₄)$ and the solvent evaporated under reduced pressure to give a residue which was subjected to column chromatography on $SiO₂$.

4.2.1. 1-Benzyl-2-hydroxymethylaziridine (2a). Column chromatography (ethyl ether/light petroleum 90:10) afforded 2a as a white solid (70% yield), mp $64-66^{\circ}$ C (lit.,¹³ 84–85°C, optically pure). ¹H NMR (200 MHz): δ 1.53 (1H, m, CHCH₂OH), 1.81-1.91 (2H, m, NCH₂CH), 2.25 (1H, br, CH₂OH), 3.44 (1H, dd, J=5.0, 11.5 Hz, CH₂OH), 3.46 (1H, d, J=13.0 Hz, CH₂Ph), 3.56 (1H, d, $J=13.0$ Hz, CH_2Ph , 3.81 (1H, dd, $J=3.0$, 11.5 Hz, CH₂OH), 7.25-7.39 (5H, m, aromatic). MS, m/z : 164 (8, $[M+1]^{\dagger}$), 163 (7), 162 (7), 132 (6), 91 (100), 72 (75), 65 $(32\%).$

4.2.2. cis-1-Benzyl-3-ethyl-2-hydroxymethylaziridine (cis-2c). After chromatography (ethyl ether/light petroleum 80:20 and finally pure ethyl ether) $cis-2c$ was obtained as a light pink sticky oil (86% yield). ¹H NMR (200 MHz): δ 0.88 (3H, t, J=7.5 Hz, CH₃CH₂), 1.42 (2H, m, CH₃CH₂), 1.62 (1H, g, J=6.5 Hz, CH₃CH₂CH), 1.84 (1H, dt, J=5.0, 6.5 Hz, CHCH₂OH), 2.38 (1H, br, CH₂OH), 3.45 (1H, d, $J=13.0$ Hz, CH_2Ph , 3.48 (1H, dd, $J=11.5$, 7.0 Hz, CH₂OH), 3.55 (1H, d, J=13.0 Hz, CH₂Ph), 3.71 (1H, dd, $J=11.5$, 5.0 Hz, CH₂OH), 7.22–7.36 (5H, m, aromatic). MS, m/z : 190 (1, $[M-1]^+$), 160 (1), 146 (1), 117 (1), 100 (16), 91 (39), 72 (100), 65 (59%). Anal. Calcd for $C_{12}H_{17}NO: C$, 75.35; H, 8.96; N, 7.32. Found: C, 75.19; H, 9.07; N, 7.46.

4.2.3. trans-1-Benzyl-3-ethyl-2-hydroxymethylaziridine (trans-2c). Column chromatography (ethyl ether/light petroleum 90:10 and finally pure ethyl ether) afforded trans-2c (68% yield; light yellow sticky oil) as a 77:23 mixture of two invertomers at nitrogen, due to slow nitrogen inversion on the NMR scale. ${}^{1}H$ NMR (400 MHz): major invertomer: δ 1.09 (3H, t, J=7.5 Hz, CH₃CH₂), 1.56–1.82 (3H, m, CH₃CH₂ and EtCH), 2.05 (1H, ddd, $J=7.5$, 6.0, 3.5 Hz, CHCH₂O), 2.62 (1H, br, CH₂OH), 3.42 (1H, dd, $J=11.0$, 4.5 Hz, CH₂OH), 3.58 (1H, d, $J=13.5$ Hz, CH₂Ph), 3.74 (1H, br d, $J=11.0$ Hz, CH₂OH), 3.87 (1H, d, $J=13.5$ Hz, CH₂Ph), $7.33-7.45$ (5H, m, aromatic); minor invertomer: δ 0.87 (3H, t, J=7.5 Hz, CH₃CH₂), 1.43–1.53 $(3H, m, CH_3CH_2)$ and EtCH), 2.12 (1H, dt, J=8.5, 3.5 Hz, CHCH₂O), 2.40 (1H, br, CH₂OH), 3.65 (1H, d, J=14.0 Hz, CH₂Ph), 3.80 (1H, m, CH₂OH), 3.88 (1H, d, J=14.0 Hz, CH_2Ph), 3.94 (1H, m, CH_2OH), 7.26-7.32 (5H, m, aromatic). MS, m/z : 190 (1, $[M-1]^+$), 160 (2), 146 (1), 130 (2), 100 (19), 91 (40), 77 (6), 72 (100), 65 (55%). Anal. Calcd for $C_{12}H_{17}NO$: C, 75.35; H, 8.96; N, 7.32. Found: C, 75.09; H, 8.82; N, 7.51.

4.2.4. cis-1-Benzyl-2-hydroxymethyl-3-phenylaziridine (cis-2d). Chromatography (ethyl ether/light petroleum 50:50) afforded cis-2d as a light yellow sticky oil (99% yield). ¹H NMR (200 MHz): δ 1.69 (1H, br, CH₂OH), 2.22 (1H, dt, $J=6.0$, 6.5 Hz, CHCH₂OH), 2.94 (1H, d, $J=6.5$ Hz, PhCH), 3.34 (1H, dd, $J=7.0$, 11.5 Hz, CHC H_2 OH), 3.50 (1H, dd, J=6.0, 11.5 Hz, CHC H_2 OH), 3.70 (1H, d, $J=13.5$ Hz, CH_2Ph), 3.80 (1H, d, $J=13.5$ Hz, CH₂Ph), 7.20-7.50 (10H, m, aromatic). MS, m/z : 239 (5, M^+), 238 (19), 208 (2), 162 (100), 148 (53), 118 (13), 105 (8), 91 (24), 77 (12%). Anal. Calcd for $C_{16}H_{17}NO$: C, 80.30; H, 7.16; N, 5.85. Found: C, 80.23; H, 7.34; N, 5.91.

4.2.5. trans-1-Benzyl-2-hydroxymethyl-3-phenylaziridine (trans-2d). Chromatography (ethyl ether/light petroleum 80:20) gave trans-2d as pale yellow viscous liquid (83% yield). ¹H NMR spectroscopy showed compound trans-2d as a 79:21 mixture of two invertomers at nitrogen. ¹H NMR (400 MHz): major invertomer: δ 2.43–2.49 (1H, m, $CHCH_2OH$), 2.83 (1H, br, CH_2OH), 3.19 (1H, d, $J=13.5$ Hz, CH₂Ph), 3.34 (1H, d, $J=3.5$ Hz, PhCH), 3.46 (1H, d, $J=13.5$ Hz, $CH₂Ph$), $3.55-3.65$ (1H, m, CHCH₂OH), 3.83-3.90 (1H, m, CHCH₂OH), 7.20-7.60 (10H, m, aromatic); minor invertomer: δ 2.11 (1H, br, CH₂OH), 2.53 (1H, d, J=3.5 Hz, PhCH), 2.56–2.62 (1H, m, CHCH₂OH), 3.90–3.98 (2H, m, CH₂OH and CH₂Ph), 4.01-4.10 (2H, m, CH₂OH and CH₂Ph), 7.20-7.60 (10H, m, aromatic). MS, m/z : 239 (3, M⁺), 238 (9), 208 (2), 162 (39), 148 (17), 118 (6), 105 (6), 91 (100), 77 (12%). Anal. Calcd for C₁₆H₁₇NO: C, 80.30; H, 7.16; N, 5.85. Found: C, 80.15; H, 7.28; N, 6.02.

4.2.6. trans-1-Benzyl-2-hydroxymethyl-3-trifluoromethylaziridine (*trans-2e*). The crude residue was chromatographed (ethyl ether/light petroleum 60:40), to provide *trans-*2e as a pale yellow sticky liquid (92% yield). ¹H NMR spectroscopy showed broad and poorly resolved signals, indicating the presence of two invertomers at nitrogen. ¹H NMR (200 MHz): δ 1.60 (1H, br, OH), 2.10-2.90 (2H, br m, CF_3CH and $CHCH_2OH$), 3.89 (4H, m, CHCH₂OH and CH₂Ph), 7.23–7.40 (5H, m, aromatic). MS, m/z : 231 (5, M⁺), 213 (2), 200 (10), 181 (2), 160 (1), 140 (33), 112 (30), 104 (10), 91 (100), 77 (12), 65 (18%). Anal. Calcd for C₁₁H₁₂F₃NO: C, 57.14; H, 5.23; N, 6.06. Found: C, 57.28; H, 5.38; N, 6.23.

4.3. Synthesis of protected hydroxymethyl aziridines 3a, c-e. General procedure

The hydroxymethylaziridine (1 mmol) was dissolved in anhydrous dichloromethane (6 mL): DMAP (2.5 mmol) and TBDMSCl (1.2 mmol) were added at rt under magnetic strirring and nitrogen flow (for the synthesis of aziridine 3a, the parent hydroxymethylaziridine 2a was cooled to -20° C, in order to avoid the easy opening of the aziridine ring). After disappearance of the starting material, the reaction mixture was then diluted with CH_2Cl_2 (12 mL), washed with water $(2\times20 \text{ mL})$ and brine (20 mL) , dried over MgSO4 and rotary evaporated. The residue was then chromatographed to afford the desired TBDMS-derivative in pure form.

4.3.1. 1-Benzyl-2-(tert-butyldimethylsilyloxymethyl) aziridine (3a). Chromatography (light petroleum/ethyl ether 80:20) afforded 3a as a pale yellow liquid (98% yield). ¹H NMR (200 MHz): δ 0.11 (6H, s, ^fBuMe₂Si), 0.94 (9H, s, ${}^{t}BuMe₂Si$), 2.97 (1H, quintet, $J=5.5$ Hz, CHCH₂O), 3.62-3.80 (4H, m, NCH₂CH and CHCH₂O), 3.85 (1H, d, J=13.0 Hz, CH₂Ph), 3.94 (1H, d, J=13.0 Hz, CH₂Ph), 7.26–7.39 (5H, m, aromatic). MS, m/z : 277 (1, M^{\dagger}), 262 (3), 220 (100), 146 (4), 91 (88), 73 (27%). Anal. Calcd for $C_{16}H_{27}NOSi$: C, 69.26; H, 9.81; N, 5.05. Found: C, 69.03; H, 9.98; N, 5.20.

4.3.2. cis-1-Benzyl-2-(tert-butyldimethylsilyloxymethyl)- 3-ethylaziridine (cis-3c). After chromatography (light petroleum/ethyl ether 90:10) cis-3c was obtained as a light yellow oil (91% yield). ¹H NMR (200 MHz): δ 0.09 (6H, s,

 $t_{\text{Bu}}/t_{\text{e2}}$ Si), 0.94 (9H, s, $t_{\text{Bu}}/t_{\text{e2}}$ Si), 0.96 (3H, t, J=7.0 Hz, CH₃CH₂), 1.29-1.63 (3H, m, CH₃CH₂ and CH₃CH₂CH), 1.81 (1H, q, $J=6.0$ Hz, $CHCH_2O$), 3.48 (1H, d, $J=13.5$ Hz, CH₂Ph), 3.59 (1H, d, $J=13.5$ Hz, CH₂Ph), 3.62 (1H, dd, $J=6.5$, 11.0 Hz, CH₂O), 3.81 (1H, dd, $J=6.0$, 11.0 Hz, CH₂O), 7.24-7.42 (5H, m, aromatic). MS, m/z : 305 (5, M⁺), 290 (3), 276 (8), 248 (53), 214 (23), 206 (13), 174 (3), 160 (8), 158 (16), 91 (100), 75 (19), 73 (87%). Anal. Calcd for C₁₈H₃₁NOSi: C, 70.76; H, 10.23; N, 4.58. Found: C, 70.67; H, 10.31; N, 4.49.

4.3.3. trans-1-Benzyl-2-(tert-butyldimethylsilyloxymethyl)- 3-ethylaziridine (trans-3c). Aziridine trans-3c was prepared in close analogy with the cis analogue (78% yield; pale yellow oil). ¹H NMR spectroscopy showed trans-3c as a 53:47 mixture of two invertomers at nitrogen. ¹H NMR (400 MHz): major invertomer: δ 0.058 (3H, s, Bu Me_2 Si), 0.063 (3H, s, ^tBu Me_2 Si), 0.92 (9H, s, ^tBuMe₂Si), 1.11 (3H, t, J=7.5 Hz, CH₃CH₂), 1.40–1.85 (3H, m, CH_3CH_2 and $CHCH_2O$, 1.90 (1H, ddd, J=7.5, 6.0, 3.5 Hz, CH₃CH₂CH), 3.55 (1H, dd, $J=6.0$, 11.0 Hz, CH₂O), 3.57 (1H, d, J=13.0 Hz, CH₂Ph), 3.68 (1H, dd, $J=6.0, 11.0$ Hz, CH₂O), 4.03 (1H, d, $J=13.0$ Hz, CH₂Ph), 7.30–7.40 (5H, m, aromatic); minor invertomer: δ 0.11 (3H, s, ${}^{t}BuMe_{2}Si$), 0.12 (3H, s, ${}^{t}BuMe_{2}Si$), 0.86 (3H, t, J=7.5 Hz, CH_3CH_2), 0.95 (9H, s, ${}^{t}BuMe_2Si$), 1.40-1.85 (3H, m, CH_3CH_2 and CH_3CH_2CH , 2.14 (1H, dt, J=7.5, 3.5 Hz, CHCH₂O), 3.50 (1H, d, J=14.0 Hz, CH₂Ph), 3.86 (1H, d, $J=14.0$ Hz, CH_2Ph), 3.92 (1H, dd, $J=7.5$, 12.0 Hz, CH_2O), 4.04 (1H, dd, $J=3.5$, 12.0 Hz, CH₂O), 7.30-7.40 (5H, m, aromatic). MS, m/z : 305 (3, M⁺), 290 (1), 248 (50), 214 (26), 174 (2), 144 (2), 129 (2), 91 (100), 83 (6), 75 (20%). Anal. Calcd for C₁₈H₃₁NOSi: C, 70.76; H, 10.23; N, 4.58. Found: C, 70.51; H, 10.39; N, 4.42.

4.3.4. cis-1-Benzyl-2-(tert-butyldimethylsilyloxymethyl)- 3-phenylaziridine (cis-3d). The residue was chromatographed (light petroleum/ethyl ether 90:10) to afford cis-3d as a light yellow oil (86% yield). ¹H NMR (200 MHz): δ -0.12 (3H, s, 'BuMe₂Si), -0.10 (3H, s, 'BuMe₂Si), 0.84 (9H, s, tBuMe_2Si), 2.16 (1H, dt, J=5.5, 6.5 Hz, CHCH₂O), 2.85 (1H, d, $J=6.5$ Hz, PhCH), 3.32 (1H, dd, $J=6.5$, 11.0 Hz, CHCH₂O), 3.62 (1H, dd, $J=5.5$, 11.0 Hz, CHCH₂O), 3.64 (1H, d, J=13.5 Hz, CH₂Ph), 3.85 (1H, d, $J=13.5$ Hz, CH₂Ph), 7.20–7.49 (10H, m, aromatic). MS, m/z: 353 (36, M⁺), 338 (4), 296 (38), 262 (100), 206 (25), 130 (11), 115 (12), 91 (58), 73 (79%). Anal. Calcd for $C_{22}H_{31}NOSi$: C, 74.73; H, 8.84; N, 3.96. Found: C, 74.66; H, 8.99; N, 4.07.

4.3.5. trans-1-Benzyl-2-(tert-butyldimethylsilyloxymethyl)- 3-phenylaziridine (trans-3d). After purification by chromatography (light petroleum/ethyl ether 80:20), trans-3d was obtained as a light yellow oil (90% yield). ¹H NMR spectroscopy showed trans-3d as a 57:43 mixture of two invertomers at nitrogen. ¹H NMR (400 MHz): major invertomer: δ 0.17 (6H, s, 'BuMe₂Si), 1.01 (9H, s, 'BuMe₂Si), 2.50 -2.52 (1H, m, CHCH₂O), 2.70 (1H, d, J=2.5 Hz, PhCH), $3.79-3.85$ (2H, m, CHCH₂O), 3.87 (1H, d, $J=14.5$ Hz, CH₂Ph), 4.25 (1H, d, $J=14.5$ Hz, CH₂Ph), 7.20 -7.50 (10H, m, aromatic); minor invertomer: δ 0.14 (6H, s, 'BuMe₂Si), 0.98 (9H, s, 'BuMe₂Si), 2.50-2.52 (1H, m, CHCH₂O), 3.19 (1H, d, $J=14.0$ Hz, CH₂Ph), 3.24 (1H, d,

 $J=3.0$ Hz, PhCH), 3.49 (1H, d, $J=14.0$ Hz, CH₂Ph), 4.16 $(1H, dd, J=3.0, 12.0 Hz, CHCH₂O), 4.21 (1H, dd, J=7.0,$ 12.0 Hz, CHCH₂O), $7.20-7.50$ (10 H, m, aromatic). MS, m/ z: 353 $(2, M^{\dagger})$, 296 (5) , 262 (42) , 206 (9) , 130 (10) , 115 (13), 91 (63), 73 (100%). Anal. Calcd for $C_2,H_{31}NOSi$: C, 74.73; H, 8.84; N, 3.96. Found: C, 74.53; H, 9.06; N, 4.13.

4.3.6. trans-1-Benzyl-2-(tert-butyldimethylsilyloxymethyl)- 3-trifluoromethylaziridine (trans-3e). Column chromatography (light petroleum/ethyl ether 95:5) gave *trans* 3e as a pale reddish liquid (88% yield). As for *trans* 2e, ¹H NMR spectroscopy showed broad and poorly resolved signals, indicating the presence of two invertomers at nitrogen. ¹H NMR (200 MHz): δ 0.07 (6H, s, ^{*'BuMe*₂Si), 0.90} (9H, s, t BuMe₂Si), 2.40 (1H, m, ring H), 2.58 (1H, br m, ring H), 3.72 (1H, d, J=14.0 Hz, CH₂Ph), 3.97 (2H, s, CH₂O), 4.01 (1H, d, $J=14.0$ Hz, CH_2Ph), 7.22-7.39 (5H, m, aromatic). MS, m/z : 345 (1, M⁺), 330 (1), 288 (33), 276 (1), 241 (1), 200 (2), 168 (1), 144 (4), 91 (100), 77 (12), 65 (6%). Anal. Calcd for $C_{17}H_{26}F_3NOSi$: C, 59.10; H, 7.59; N, 4.05. Found: C, 59.23; H, 7.81; N, 4.23.

4.3.7. cis-1-Benzyl-2,3-bis-(tert-butyldimethylsilyloxy**methyl)aziridine** (cis-3f). Aziridine cis- 8^3 (886 mg, 2.67 mmol) was dissolved in anhydrous acetonitrile (22 mL). Potassium carbonate (1.11 g, 8.01 mmol) and benzyl bromide (318 μ L, 2.67 mmol) were added at rt to the stirred solution and the mixture was refluxed for 1 h. After addition of water (50 mL) and extraction with ethyl ether (3×30 mL), the combined phases were dried ($MgSO₄$) and concentrated in vacuo. Chromatography on silica gel (light petroleum/diisopropyl ether 95:5) gave N-benzylaziridine cis-3f as a light yellow oil (912 mg, 81% yield). ¹H NMR (200 MHz): δ 0.08 (2×6H, s, 'BuMe₂Si), 0.93 (2×9H, s, Bu'Me₂Si), 1.83–1.93 (2×1H, m, CHCH₂O), 3.57 (2H, s, PhCH₂), 3.66-3.76 (2 \times 2H, m, CH₂O), 7.26-7.44 (5H, m, aromatic). MS, m/z : 421 (7, M⁺), 364 (51), 276 (30), 206 (99), 147 (13), 115 (11), 91 (100), 73 (62%). Anal. Calcd for $C_{23}H_{43}NO_2Si_2$: C, 65.50; H, 10.28; N, 3.32. Found: C, 65.71; H, 10.40; N, 3.18.

4.3.8. cis-2-Acetoxymethyl-1-benzyl-3-methylaziridine $(cis-4b)$. Aziridine $cis-2b$ (200 mg, 1.13 mmol) was dissolved in anhydrous dichloromethane (20 mL) and DCC (279 mg, 1.35 mmol), acetic acid (71 μ L, 1.2 mmol) and few crystals of DMAP were added and the mixture was stirred at rt for 3 h. DCU was removed by filtration, the filtrate was concentrated under reduced pressure and purified by chromatography (ethyl ether/light petroleum 70:30) to give *cis*-4b as a pale yellow oil $(232 \text{ mg}, 94\% \text{ yield})$. ¹H NMR (200 MHz): δ 1.25 (3H, d, J=5.5 Hz, CH₃CH), 1.69– 1.82 (1H, m, CH₃CH), 1.83-1.91 (1H, m, CHCH₂OAc), 2.01 (3H, s, OCOCH₃), 3.45 (1H, d, $J=13.5$ Hz, NCH₂Ph), 3.65 (1H, d, J=13.5 Hz, NCH₂Ph), 4.07 (1H, dd, $J=11.5$, 7.0 Hz, CH₂OAc), 4.18 (1H, dd, $J=11.5$, 5.5 Hz, CH₂OAc), 7.27–7.38 (5H, m, aromatic). MS, m/z : 218 (2, [M-1]⁺), 160 (12), 128 (13), 91 (65), 86 (100), 77 (3), 65 (14%). Anal. Calcd for $C_{13}H_{17}NO_2$: C, 71.21; H, 7.81; N, 6.39. Found: C, 71.05; H, 7.93; N, 6.58.

4.3.9. cis-2-Acetoxymethyl-1-benzyl-3-phenylaziridine (cis-4d). DCC (160 mg, 0.78 mmol), acetic acid (40 μ L, 0.70 mmol) and few crystals of DMAP were added to a solution of aziridine $cis-2d$ (154 mg, 0.64 mmol) in anhydrous dichloromethane (11 mL) and the mixture was stirred at rt for 3 h. DCU was filtered off, the filtrate was concentrated in vacuo and purified by chromatography (ethyl ether/ light petroleum 70:30) to give cis-4d as a pale yellow oil $(179 \text{ mg}, 99\% \text{ yield})$. ¹H NMR (200 MHz): δ 1.95 (3H, s, COCH₃), 2.26 (1H, ddd, J=7.5, 6.5, 5.0 Hz, CHCH₂OAc), 2.93 (1H, d, $J=6.5$ Hz, PhCH), 3.69 (1H, d, $J=13.5$ Hz, NCH₂Ph), 3.77 (1H, dd, $J=12.0$, 7.5 Hz, CH₂OAc), 3.80 (1H, d, $J=13.5$ Hz, NCH₂Ph), 3.96 (1H, dd, $J=12.0$, 5.0 Hz, CH_2OAc), 7.22-7.49 (10H, m, aromatic). MS, m/z: 222 (2, $[M-59]^+$), 190 (66), 148 (92), 130 (13), 120 (23), 91 (100), 77 (11), 65 (19), 43 (57%). Anal. Calcd for $C_{18}H_{19}NO_2$: C, 76.84; H, 6.81; N, 4.98. Found: C, 76.69; H, 6.96; N, 5.11.

4.3.10. cis-2-Aminomethyl-1-benzyl-3-phenylaziridine (cis -5d). A stirred solution of aziridine cis -1d (400 mg, 1.50 mmol) in aqueous ammonia $(40$ mL) was refluxed for 6 h. After removal of the solvent, the crude residue was chromatographed (ethyl acetate/ethyl ether 80:20) affording cis-1-benzyl-2-carbamoyl-3-phenylaziridine as a white solid (176 mg, 47% yield). By close analogy with reduction of aziridine⁶ 1, the amide was reduced with LiAlH₄ in THF at -10° C to the corresponding amino derivative. After chromatography (ethyl acetate/ethyl ether 80:20), cis-5d was recovered as a sticky yellow liquid in 49% yield.

 $\emph{cis-1-Benzyl-2-carbamoyl-3-phenylaziridine.}$ $\,{}^{1}\text{H}\,{}$ NMR (200 MHz) : δ 2.63 (1H, d, J=7.0 Hz, CHCO), 3.20 (1H, d, $J=7.0$ Hz, PhCH), 4.43 (1H, d, $J=13.0$ Hz, NCH₂Ph), 4.51 (1H, d, J=13.0 Hz, NCH₂Ph), 5.14 (1H, br, CONH₂), 6.09 (1H, br, CON H_2), 7.20–7.45 (10H, m, aromatic). MS, m/z: 252 (2, M⁺), 251 (6), 208 (1), 207 (1), 175 (45), 161 (32), 120 (8), 118 (9), 106 (6), 104 (10), 91 (100), 77 (9), 65 (12), 51 (7%).

cis-5d. ¹H NMR (200 MHz): δ 1.62 (2H, br, CH₂NH₂), 2.23 $(H, m, CHCH₂), 2.94$ (1H, d, J=6.5 Hz, PhCH), 3.34 (1H, dd, $J=7.0$, 11.5 Hz, CHCH₂NH₂), 3.50 (1H, dd, $J=6.0$, 11.5 Hz, CHC H_2 NH₂), 3.70 (1H, d, J=13.5 Hz, CH₂Ph), 3.80 (1H, d, $J=13.5$ Hz, $CH₂Ph$), 7.23-7.47 (10H, m, aromatic). MS, m/z : 239 (1, $[M+1]^+$), 161 (100), 147 (14), 105 (43), 91 (96), 77 (8%). Anal. Calcd for $C_{16}H_{18}N_2$: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.33; H, 7.86; N, 11.48.

4.3.11. cis-1-Benzyl-2-formyl-3-phenylaziridine (cis-6d). A 20% DIBAL-H solution in hexane (1.4 mL, 1.97 mmol) was slowly added dropwise through a dropping funnel to a stirred solution of aziridine cis-1d (250 mg, 0.94 mmol) in anhydrous CH₂Cl₂ (3 mL) at -78° C, under nitrogen flow. After 15 min, NaF $(0.83 \text{ g}, 19.7 \text{ mmol})$ and $H_2O (0.6 \text{ mL})$ were added and the reaction mixture allowed to reach rt. The white inorganic precipitate was filtered off and washed with ethyl ether. The filtrate was dried $(MgSO_4)$ and the solvent evaporated under reduced pressure. The crude residue was chromatographed on $SiO₂$ (light petroleum/ethyl ether 90:10) to afford *cis*-6d as a pale yellow liquid in 52% yield, as well as *cis*-2d in trace amounts.

cis-6d. ¹H NMR (200 MHz): δ 2.49 (1H, t, J=6.5 Hz, CHCHO), 3.28 (1H, d, $J=6.5$ Hz, PhCH), 3.74 (1H, d, $J=13.5$ Hz, NCH₂), 3.94 (1H, d, $J=13.5$ Hz, NCH₂), 7.27 $-$ 7.48 (10H, m, aromatic), 8.97 (1H, d, $J=6.5$ Hz, CHO). MS, m/z : 195 (27, $[M-42]$ ⁺), 194 (27), 178 (1), 152 (2), 139 (1), 117 (10), 104 (5), 91 (100), 77 (9), 65 (21%). Anal. Calcd for C16H15NO: C, 80.98; H, 6.37; N, 5.90. Found: C, 80.83; H, 6.51; N, 5.75.

4.3.12. cis- and trans-2-Acetyl-1-benzyl-3-phenylaziridine (7d). 3,4-Dibromo-4-phenylbutan-2-one (5 g, 16.3 mmol), obtained by bromination of commercially available 4 phenyl-3-buten-2-one in CCl_4 at rt, was dissolved in DMF (35 mL) and slowly added at 0° C to a stirred solution of benzylamine (6.25 mL, 53.1 mmol) in DMF (15 mL). The reaction mixture was stirred for 30 min, leaving to warm to rt. After rotary evaporation of the solvent, the residue was diluted with water (125 mL) and extracted with petroleum ether $(5\times50$ mL). The combined organic phases were dried $(MgSO₄)$ and concentrated to give a crude oil which was chromatographed on $SiO₂$ (light petroleum/ethyl ether 80:20) to afford aziridine cis-7d (1.11 g, reddish-yellow oil) and aziridine trans-7d $(1.33 \text{ g}, \text{dark}$ yellow oil) in 61% total yield. For trans-7d ¹H NMR spectroscopy showed broad and poorly resolved signals, indicating the presence of two invertomers at nitrogen.

cis-7d. ¹H NMR (200 MHz): δ 1.75 (3H, s, COCH₃), 2.67 (1H, d, $J=7.0$ Hz, CHCOMe), 3.42 (1H, d, $J=7.0$ Hz, PhCH), 3.74 (1H, d, $J=13.5$ Hz, NCH₂Ph), 3.84 (1H, d, $J=13.5$ Hz, NCH₂Ph), 7.22-7.49 (10H, m, aromatic). MS, m/z: 251 (5, M⁺), 223 (18), 208 (1), 174 (1), 160 (1), 132 (1), 118 (5), 104 (100), 91 (53), 78 (5), 65 (9%). Anal. Calcd for $C_{17}H_{17}NO$: C, 81.24; H, 6.82; N, 5.57. Found: C, 81.48; H, 6.95; N, 5.36.

trans-**7d.** ¹H NMR (200 MHz): δ 2.25 (3H, s, COCH₃), 3.01 (1H, br, CHCOMe), 3.42 (1H, br, PhCH), 3.99 (1H, br d, $J=13.5$ Hz, NCH₂Ph), 4.28 (1H, br d, $J=13.5$ Hz, NCH₂Ph), $7.25-7.35$ (10H, m, aromatic). MS, m/z : 251 $(6, M^{\dagger})$, 223 (26), 118 (5), 104 (100), 91 (61), 78 (8), 65 (9%). Anal. Calcd for $C_{17}H_{17}NO$: C, 81.24; H, 6.82; N, 5.57. Found: C, 81.51; H, 7.03; N, 5.29.

4.3.13. cis -2-Methoxycarbonyl-3-phenylaziridine $(cis$ -9)⁴. Gaseous ammonia (3.52 g, 207 mmol) was bubbled into anhydrous acetonitrile (150 mL) cooled at -10° C in a four-necked round bottom flask, until the desired weight was reached. A solution of methyl 2,3-dibromo-3-phenylpropanoate $(7.5 \text{ g}, 24 \text{ mmol})$ in CH₃CN (45 mL) was then added dropwise under vigorous magnetic stirring, keeping the temperature at -10° C. The mixture was then left to react in the dark at rt and after 14 days triethylamine (3.25 mL, 1 mol) was added. After a further 6 days the precipitate was removed by filtration and the filtrate concentrated in vacuo. The crude residue was purified by chromatography on silica gel (light petroleum/ethyl ether 60:40) to afford trans-2 methoxycarbonyl-3-phenylaziridine 9 (1.949 g), as a light yellow oil, and cis-9 (0.890 g) as white crystals (mp $71-$ 73 $^{\circ}$ C), in 70% overall yield.

cis-9. ¹H NMR (200 MHz) δ 1.48 (1H, br, NH), 3.06 (1H, d, $J=6.5$ Hz, CHCOOMe), 3.52 (1H, d, $J=6.5$ Hz, PhCH), 3.55 (3H, s, COOC H_3), 7.25–7.45 (5H, m, aromatic). MS, m/z : 177 (3, M⁺), 176 (2) 162 (9), 146 (19), 117 (100), 104 (3) , 90 (36), 77 (5), 65 (6%). Anal. Calcd for $C_{10}H_{11}NO_2$: C, 67.78; H, 6.26; N, 7.90. Found: C, 67.51; H, 6.45; N, 7.78.

trans-9. ¹H NMR (200 MHz) δ 1.96 (1H, br, NH), 2.63 (1H, d, $J=2.0$ Hz, CHCOOMe), 3.30 (1H, d, $J=2.0$ Hz, PhCH), 3.83 (3H, s, COOC H_3), 7.25–7.46 (5H, m, aromatic). MS, m/z : 177 (1, M⁺), 176 (2), 162 (46), 118 (71), 117 (9), 104 (13), 91 (100), 77 (6). 74 (18), 65 (8%). Anal. Calcd for $C_{10}H_{11}NO_2$: C, 67.78; H, 6.26; N, 7.90. Found: C, 67.92; H, 6.47; N, 8.08.

4.3.14. cis-2-Hydroxymethyl-3-phenylaziridine (cis-10). Following the general procedure described for aziridines 2, reduction of cis-9 at -10° C gave cis-10 (ethyl acetate/ light petroleum 70:30) as a white solid, mp $92-94^{\circ}C$ (68%) yield); ¹H NMR (200 MHz): δ 1.74 (2H, br s, OH and NH), 2.69 (1H, m, CHCH₂OH), 3.29 (1H, dd, $J=7.0$, 12.0 Hz, CH₂OH), 3.47 (1H, d, J=6.5 Hz, PhCH), 3.49 (1H, dd, $J=5.5$, 12.0 Hz, CH₂OH), 7.24–7.43 (5H, m, aromatic). MS, m/z : 149 (3, $[M+1]^+$), 148 (13), 130 (60), 118 (44), 105 (56), 104 (100), 91 (42), 77 (35), 65 (17%). Anal. Calcd for C9H11NO: C, 72.46; H, 7.43; N, 9.39. Found: C, 72.30; H, 7.49; N, 9.43.

4.3.15. cis-2-(tert-Butyldimethylsilyloxymethyl)-3-phenylaziridine (cis-11). Following the above described protocol for aziridines 3, protection of hydroxymethylaziridine 10 gave cis-11 (ethyl acetate/light petroleum 50:50) as a pale yellow liquid (97% yield); ¹H NMR (200 MHz): δ -0.11 (3H, s, ${}^{t}\text{Bu}Me_{2}\text{Si}$), -0.09 (3H, s, ${}^{t}\text{Bu}Me_{2}\text{Si}$), 0.84 (9H, s, ${}^{t}\text{Pu}Me_{2}\text{Si}$), 2.88, 2.63 (1H, a, $I=6.5$ Hz, CHCH O), 3.25 $BuMe₂Si$, 2.58–2.63 (1H, q, J=6.5 Hz, CHCH₂O), 3.25 (1H, dd, J=6.5, 10.5 Hz, CH₂O) 3.39 (1H, d, J=6.5 Hz, PhCH), 3.57 (1H, dd, J=5.5, 10.5 Hz, CH₂O), 7.21-7.43 (5H, m, aromatic). MS, m/z : 263 (1, M⁺), 248 (2), 206 (62), 176 (33), 131 (69), 104 (100), 91 (18), 75 (23%). Anal. Calcd for $C_{15}H_{25}NOSi$: C, 68.38; H, 9.56; N, 5.32. Found: C, 68.25; H, 9.67; N, 5.44.

4.3.16. cis-1-Acetyl-2-(tert-butyldimethylsilyloxymethyl)- 3-phenylaziridine (cis-12). Triethylamine (1.22 mL, 8.8 mmol) and a solution of acetyl chloride $(46 \mu L,$ 0.65 mmol) in CH_2Cl_2 (10 mL) were added sequentially to a solution of aziridine cis-11 (150 mg, 0.57 mmol) in CH₂Cl₂ (10 mL) cooled at -10° C. After 30 min at rt, the reaction mixture was diluted with $CH₂Cl₂$, washed with water (2×25 mL) and aqueous NaHCO₃ (2×25 mL). The organic phase was dried (MgSO4) and rotary evaporated. After chromatography (light petroleum/ethyl ether 70:30) $cis-12$ was obtained as a pale yellow liquid (150 mg, 85%) yield). ¹H NMR (200 MHz): δ -0.07 (3H, s, ^tBuMe₂Si), -0.11 (3H, s, t BuMe₂Si), 0.85 (9H, s, t BuMe₂Si), 2.26 $(3H, s, COCH₃), 2.97$ (1H, q, J=6.0 Hz, CHCH₂O), 3.34 $(1H, dd, J=6.0, 11.0 Hz, CH₂O), 3.60 (1H, dd, J=6.0,$ 11.0 Hz, CH₂O), 3.77 (1H, d, J=6.0 Hz, PhCH), 7.29– 7.38 (5H, m, aromatic). MS, m/z : 305 (1, M⁺), 262 (24), 248 (76), 218 (72), 206 (100), 177 (14), 144 (42), 131 (49), 115 (26), 104 (41), 91 (42), 75 (34), 73 (98%). Anal. Calcd for $C_{17}H_{27}NO_2Si$: C, 66.84; H, 8.91; N, 4.59. Found: C, 66.71; H, 9.05; N, 4.72.

4.3.17. cis-2-(tert-Butyldimethylsilyloxymethyl)-1-ethoxycarbonylmethyl-3-phenylaziridine (cis-13). Aziridine cis-11 (250 mg, 0.95 mmol) and ethyl bromoacetate $(164 \mu L, 1.42 \text{ mmol})$ were dissolved in anhydrous acetonitrile (15.2 mL) and potassium carbonate (394 mg, 2.85 mmol) was added. The mixture was refluxed for 7 h, cooled to rt and diluted with water (50 mL). The solution was extracted with ethyl ether $(3\times50$ mL) and the combined organic phases were dried $(MgSO₄)$ and rotary evaporated. After chromatography (light petroleum/ethyl ether 90:10) $cis-13$ was obtained as a pale yellow liquid (174 mg, 52%) yield). ¹H NMR (200 MHz): δ -0.14 (3H, s, ^tBuMe₂Si), -0.11 (3H, s, t BuMe₂Si), 0.83 (9H, s, t BuMe₂Si), 1.29 $(3H, t, J=7.0 \text{ Hz}, \text{COOCH}_2CH_3)$, 2.09 (1H, m, CHCH₂O), 2.83 (1H, d, $J=6.5$ Hz, PhCH), 3.22 (1H, dd, $J=7.5$, 11.0 Hz, CHCH₂O), 3.24 (1H, d, $J=16.0$ Hz, CH₂COOEt), 3.49 (1H, d, $J=16.0$ Hz, CH₂COOEt), 3.75 (1H, dd, $J=5.0$, 11.0 Hz, CHCH₂O), 4.24 (2H, q, J=7.0 Hz, COOCH₂CH₃), 7.24 -7.46 (5H, m, aromatic). MS, m/z : 349 (51, M⁺), 292 (62), 276 (68), 262 (100), 234 (50), 206 (57), 204 (97), 144 (48), 115 (31), 101 (41), 91 (56), 73 (92%). Anal. Calcd for $C_{19}H_{31}NO_3Si$: C, 65.29; H, 8.94; N, 4.01. Found: C, 65.20; H, 9.10; N, 4.13.

4.4. General procedure for the dicobalt octacarbonylcatalyzed carbonylation of aziridines

The aziridine (1 mmol) was dissolved in freshly distilled and oxygen-free anhydrous DME (10 mL) in a stainless steel autoclave, equipped with a glass liner and a stirring bar, and the metal catalyst $Co_2(CO)_8$ (1/12 mmol) was added. After purging with CO, the autoclave was charged with 500 psi of carbon monoxide and placed in an oil bath at 100° C for 14 h. The work-up of the reaction mixture was carried out as previously reported, $\frac{1}{2}$ giving a crude residue which was purified by chromatography on silica gel, using the eluent indicated below [in square brackets].

4.4.1. 1-Benzyl-4-(tert-butyldimethylsilyloxymethyl) azetidin-2-one (14a). From aziridine 3a, β -lactam 14a [light petroleum/ethyl ether 50:50] was obtained in 40% yield as a dark yellow liquid; ${}^{1}H$ NMR (200 MHz): δ 0.07 (6H, s, 'Bu Me_2 Si), 0.92 (9H, s, 'BuMe₂Si), 2.73 (1H, dd, $J=1.5$, 14.5 Hz, ring CH₂), 2.94 (1H, dd, $J=5.0$, 14.5 Hz, ring CH₂), 3.58–3.79 (3H, m, CHCH₂O and CHCH₂O), 4.18 (1H, d, $J=15.0$ Hz, CH_2Ph), 4.71 (1H, d, $J=15.0$ Hz, CH₂Ph), $7.26-7.42$ (5H, m, aromatic). MS, m/z : 305 (1, M¹), 304 (1), 290 (1), 262 (1), 249 (1), 248 (4), 207 (17), 206 (100), 132 (2), 115 (3), 91 (53), 73 (7), 59 (6%). Anal. Calcd for $C_{17}H_{27}NO_2Si$: C, 66.84; H, 8.91; N, 4.59. Found: C, 67.13; H, 9.12; N, 4.67.

4.4.2. trans-1-Benzyl-4-(tert-butyldimethylsilyloxymethyl)- 3-ethylazetidin-2-one (trans-14c) and trans-1-benzyl-3- (tert-butyldimethylsilyloxymethyl)-4-ethylazetidin-2-one ($trans-15c$). From aziridine cis-3c, β -lactams trans-14c and trans-15c (83:17) were isolated [light petroleum/ethyl ether 70:30] in 98% overall yield, both as a light yellow oil.

trans-14c. ¹H NMR (400 MHz): δ 0.04 (6H, s, ^{*t*}BuMe₂Si), 0.89 (9H, s, tBuMe_2Si), 0.97 (3H, t, J=7.5 Hz, CH₃CH₂), 1.60 (1H, ddq, $J=9.0$, 14.0, 7.5 Hz, CH₃CH₂), 1.79 (1H, ddq, $J=5.5$, 14.0, 7.5 Hz, CH₃CH₂), 2.84 (1H, dddd, $J=0.5$, 2.0, 5.5, 9.0 Hz, CH₃CH₂CH₁, 3.24 (1H, ddd, $J=2.0$, 4.5, 5.5 Hz, CHCH₂O), 3.65 (1H, dd, $J=5.5$, 11.0 Hz, CH₂O), 3.69 (1H, dd, J=4.5, 11.0 Hz, CH₂O),

4.09 (1H, d, J=15.0 Hz, CH₂Ph), 4.70 (1H, d, J=15.0 Hz, CH₂Ph), 7.25–7.36 (5H, m, aromatic). ¹³C NMR: δ -4.86 $({}^{t}BuMe₂Si)$, -4.84 (${}^{t}BuMe₂Si)$, 12.3 ($CH₃CH₂$), 18.9 $(Me₃CMe₂Si)$, 21.9 $(CH₃CH₂)$, 26.5 $(Me₃CMe₂Si)$, 45.5 (CH_2Ph) , 54.5 (CH_3CH_2CH) , 58.8 $(CHCH_2O)$, 64.4 (CH₂O), 128.2, 128.9, 129.3, 137.2, 170.8 (carbonyl). MS, m/z : 333 (1, M⁺), 332 (1), 318 (1), 305 (1), 288 (1), 276 (3), 248 (2), 207 (15), 206 (100), 188 (1), 143 (17), 91 (46), 75 (18), 73 (8%). Anal. Calcd for C₁₉H₃₁NO₂Si: C, 68.42; H, 9.37; N, 4.20. Found: C, 68.36; H, 9.44; N, 4.31.

trans-15c. ¹H NMR (400 MHz): δ 0.06 (6H, s, ^{*t*}BuMe₂Si), 0.87 (3H, t, J=7.5 Hz, CH₂CH₃), 0.88 (9H, s, t BuMe₂Si), 1.34 -1.46 (1H, m, CH₂CH₃), 1.66 -1.84 (1H, m, CH₂CH₃), 2.92 (1H, dddd, $J=0.5$, 2.0, 3.5, 6.0 Hz, OCH₂CH), 3.42 $(1H, ddd, J=2.0, 4.0, 9.0 Hz, CHCH₂CH₃), 3.87 (1H, dd,$ $J=3.5$, 11.0 Hz, OCH₂), 3.91 (1H, dd, $J=6.0$, 11.0 Hz, OCH₂), 4.10 (1H, d, J=15.5 Hz, CH₂Ph), 4.65 (1H, d, J=15.5 Hz, CH₂Ph), 7.25–7.35 (5H, m, aromatic). ¹³C NMR: δ -4.8 ('BuMe₂Si), -4.7 ('BuMe₂Si), 10.3 (CH_2CH_3) , 19.0 (Me₃CMe₂Si), 25.7 (CH₂CH₃), 26.5 $(Me₃CMe₂Si)$, 44.4 (CH₂Ph), 57.2 (CHCH₂CH₃), 58.5 (OCH₂CH), 60.6 (OCH₂), 128.2, 128.8, 129.3, 136.8, 168.4 (carbonyl). MS, m/z : 334 (1, $[M+1]^+$), 333 (1), 332 (1), 318 (3), 304 (1), 277 (19), 276 (100), 246 (3), 219 (1), 184 (4), 143 (5), 129 (1), 91 (38), 75 (13), 73 (4%). Anal. Calcd for $C_{19}H_{31}NO_2Si$: C, 68.42; H, 9.37; N, 4.20. Found: C, 68.21; H, 9.63; N, 3.94.

4.4.3. cis-1-Benzyl-4-(tert-butyldimethylsilyloxymethyl)- 3-ethylazetidin-2-one (cis-14c) and cis-1-benzyl-3-(tertbutyldimethylsilyloxymethyl)-4-ethylazetidin-2-one (cis-15c). From aziridine trans-3c, b-lactams cis-14c and cis -15c (73:27) were isolated [light petroleum/ethyl ether 70:30] as yellow oils in 60% overall yield.

cis-14c. ¹H NMR (200 MHz): δ 0.054 (3H, s, ^tBuMe₂Si), 0.056 (3H, s, $\frac{t}{B}$ u Me_2 Si), 0.91 (9H, s, $\frac{t}{B}$ u Me_2 Si), 1.09 (3H, t, $J=7.5$ Hz, CH_3CH_2), 1.57-1.89 (2H, m, CH₃CH₂), 3.11 $(1H, dt, J=5.0, 8.0 Hz, CH₃CH₂CH)$, 3.63 (1H, dt, $J=5.0$, 5.5 Hz, CHCH₂O), 3.73 (1H, dd, $J=5.5$, 10.5 Hz, CHCH₂O), 3.79 (1H, dd, J=5.5, 10.5 Hz, CHCH₂O), 4.19 (1H, d, $J=15.0$ Hz, CH_2Ph), 4.70 (1H, d, $J=15.0$ Hz, CH₂Ph), $7.25-7.39$ (5H, m, aromatic). MS, m/z : 333 (1, M^+), 248 (4), 206 (100), 143 (17), 91 (67), 75 (31%). Anal. Calcd for $C_{19}H_{31}NO_2Si$: C, 68.42; H, 9.37; N, 4.20. Found: C, 68.26; H, 9.58; N, 4.02.

cis-15c. ¹H NMR (400 MHz): δ 0.06 (6H, s, ^{*t*}BuMe₂Si), 0.87 (3H, t, J=7.5 Hz, CH₂CH₃), 0.89 (9H, s, ${}^{t}BuMe_{2}Si$), 1.32–1.43 (1H, m, CH₂CH₃), 1.68–1.83 (1H, m, CH₂CH₃), 2.94 (1H, dt, $J=3.5$, 5.5 Hz, OCH₂CH), 3.40 (1H, ddd, $J=4.0$, 5.5, 9.0 Hz, CHCH₂CH₃), 3.85 (1H, dd, $J=3.5$, 11.0 Hz, OCH₂), 3.90 (1H, dd, J=5.5, 11.0 Hz, OCH₂), 4.11 (1H, d, J=15.5 Hz, CH₂Ph), 4.63 (1H, d, J=15.5 Hz, CH₂Ph), $7.22-7.40$ (5H, m, aromatic). MS, m/z : 318 (3, $[M-15]^+$), 276 (100), 246 (3), 184 (7), 143 (7), 129 (3), 91 (98), 75 (40%). Anal. Calcd for $C_{19}H_{31}NO_2Si$: C, 68.42; H, 9.37; N, 4.20. Found: C, 68.20; H, 9.61; N, 3.95.

4.4.4. trans-1-Benzyl-4-(tert-butyldimethylsilyloxymethyl)- 3-phenylazetidin-2-one (trans-14d). From aziridine cis-3d, β -lactam *trans*-14d [light petroleum/ethyl ether 80:20] was

obtained as a clear yellow liquid in 95% yield; ¹H NMR (200 MHz) : δ 0.11 (6H, s, 'BuMe₂Si), 0.95 (9H, s, (200 MHz) : δ 3.41 (6H, s, the CHCH O) 3.81 ${}^{t}BuMe₂Si$, 3.63 (1H, dt, J=2.5, 4.5 Hz, CHCH₂O), 3.81 $(1H, dd, J=4.5, 11.0 Hz, CHCH₂O), 3.88 (1H, dd, J=4.0,$ 11.0 Hz, CHCH₂O), 4.18 (1H, d, J=2.5 Hz, PhCH), 4.23 (1H, d, J=15.0 Hz, CH₂Ph), 4.84 (1H, d, J=15.0 Hz, CH₂Ph), 7.24–7.39 (10H, m, aromatic). ¹³C NMR: δ -4.81 ('BuMe₂Si), -4.76 ('BuMe₂Si), 18.9 (Me₃CMe₂Si), 26.5 (Me3CMe2Si), 45.8 (CH2Ph), 57.4 (PhCH), 61.6 (CHCH₂O), 63.4 (CHCH₂O), 128.1, 128.2, 128.4, 129.0 129.5, 136.1, 136.9, 168.7 (carbonyl). MS, m/z: 381 (5, M^+), 366 (1), 324 (6), 248 (28), 206 (23), 191 (100), 117 (43), 91 (40), 73 (12), 59 (3%). Anal. Calcd for $C_{23}H_{31}NO_2Si$: C, 72.39; H, 8.19; N, 3.67. Found: C, 72.16; H, 8.31; N, 3.85.

4.4.5. cis-1-Benzyl-4-(tert-butyldimethylsilyloxymethyl)- 3-phenylazetidin-2-one (cis-14d). From aziridine trans-3d, β -lactam cis-14d [light petroleum/ethyl ether 80:20] was obtained as yellow sticky liquid in 40% yield; ¹H NMR (200 MHz): δ 0.09 (6H, s, ^tBuMe₂Si), 0.91 (9H, s, ^tBuMe₃Si), 0.91 (9H, s, $BuMe₂Si$, 3.59 (1H, dt, J=5.5, 4.0 Hz, CHCH₂O), 3.83 (1H, dd, $J=4.5$, 11.0 Hz, CHCH₂O), 3.86 (1H, dd, $J=4.0$, 11.0 Hz, CHCH₂O), 4.21 (1H, d, $J=5.5$ Hz, PhCH), 4.23 (1H, d, $J=15.5$ Hz, CH_2Ph), 4.84 (1H, d, $J=15.5$ Hz, CH₂Ph), $7.25-7.45$ (10H, m, aromatic). MS, m/z : 324 (50, $[M-57]^{\dagger}$), 248 (9), 191 (100), 135 (33), 117 (20), 91 (56), 73 (29), 59 (10%). Anal. Calcd for C₂₃H₃₁NO₂Si: C, 72.39; H, 8.19; N, 3.67. Found: C, 72.11; H, 8.36; N, 3.90.

4.4.6. trans-1-Benzyl-3,4-bis-(tert-butyldimethylsilyloxymethyl)azetidin-2-one (trans-14f). From aziridine cis-3f, b-lactam trans-14f was obtained [light petroleum/ethyl ether 70:30] as a pale yellow oil in 90% yield; ¹H NMR (200 MHz) : δ 0.06 (2×3H, s, t Bu Me_2 Si), 0.08 (2×3H, s, t Bu Me Si), 0.09 (0H s, t BuMa Si) BuMe₂Si), 0.89 (9H, s, 'BuMe₂Si), 0.91 (9H, s, 'BuMe₂Si), 3.06 -3.19 (1H, m, CHCHCH₂O), 3.62 -3.81 (2H, m, $CHCH₂O$, 3.69 (1H, ddd, J=6.5, 5.0, 2.0 Hz, CHCHCH₂O), 3.86 (1H, dd, $J=11.0$, 3.5 Hz, CHCH₂O), 3.97 (1H, dd, $J=11.0$, 5.0 Hz, CHCH₂O), 4.15 (1H, d, $J=15.5$ Hz, CH₂Ph), 4.74 (1H, d, $J=15.5$ Hz, CH₂Ph), 7.27–7.34 (5H, m, aromatic). MS, m/z : 448 (1, $[M-1]^+$), 434 (3), 392 (100), 362 (1), 336 (1), 304 (1), 264 (1), 260 (4), 248 (3), 206 (57), 149 (2), 147 (16), 133 (3), 91 (46), 73 (19%). Anal. Calcd for $C_{24}H_{43}NO_3Si_2$: C, 64.09; H, 9.64; N, 3.11. Found: C, 63.88; H, 9.90; N, 3.38.

4.4.7. trans-1-Benzyl-4-hydroxymethyl-3-phenylazetidin-2-one (16). From aziridine $cis-2d$, β -lactam trans-16 was obtained [ethyl ether 100%] as a white solid, mp $92-94^{\circ}C$, in 79% yield; ¹H NMR (200 MHz): δ 1.62 (1H, br, OH), 3.67 (1H, dt, $J=4.0$, 2.5 Hz, CHCH₂OH), 3.80 (2H, m, CH₂OH), 4.26 (1H, d, $J=2.5$ Hz, PhCH), 4.49 (1H, d, $J=15.0$ Hz, CH₂Ph), 4.62 (1H, d, $J=15.0$ Hz, CH₂Ph), 7.20 -7.45 (10H, m, aromatic); ¹³C NMR: δ 45.5, 56.5, 61.4, 61.9, 127.8, 127.9, 128.4, 128.8, 129.3, 129.4, 135.5, 136.5, 169.1. MS, m/z : 268 (100, $[M+1]^+$), 240 (2), 134 (67), 115 (9), 105 (20), 91 (88), 78 (17), 65 (14%). Anal. Calcd for $C_{17}H_{17}NO_2$: C, 76.38; H, 6.41; N, 5.24. Found: C, 76.22; H, 6.29; N, 5.12.

4.4.8. trans-4-Acetoxymethyl-1-benzyl-3-phenylazetidin-2-one (17). From aziridine $cis-4d$, β -lactam trans-17 was obtained [ethyl ether/light petroleum 60:40] as a sticky yellow liquid in 86% yield; ¹H NMR (200 MHz): δ 2.07 $(3H, s, OCOCH_3), 3.73$ (1H, ddd, $J=5.0, 3.5, 2.5$ Hz, CHCH₂O), 4.15 (1H, dd, $J=12.0$, 5.0 Hz, CHCH₂O), 4.20 $(1H, d, J=2.5 Hz, PhCH)$, 4.28 $(1H, d, J=5.0 Hz, CH₂Ph)$, 4.45 (1H, dd, $J=12.0$, 3.5 Hz, CHCH₂O), 4.77 (1H, d, J=15.0 Hz, CH₂Ph), 7.23–7.45 (10H, m, aromatic); ¹³C NMR: δ 21.0, 45.6, 57.7, 58.6, 63.4, 127.7, 128.1, 128.3, 128.7, 129.29, 129.33, 134.9, 136.2, 167.9, 170.8. MS, m/z: 310 (1, $[M+1]^+$), 267 (1), 206 (1), 176 (100), 134 (65), 133 (50), 116 (38), 91 (76%). Anal. Calcd for $C_{19}H_{19}NO_3$: C, 73.77; H, 6.19; N, 4.53. Found: C, 73.56; H, 6.26; N, 4.46.

4.4.9. trans-4-Aminomethyl-1-benzyl-3-phenylazetidin-**2-one (18).** From aziridine cis-5d, β -lactam trans-18 was obtained [ethyl acetate/light petroleum 60:40] as a pale yellow solid in 68% yield; ¹H NMR (200 MHz): δ 1.96 $(2H, br, CH₂NH₂), 3.65$ (1H, dt, J=2.5, 3.5 Hz, CHCH₂), 3.74 (1H, dd, J=4.0, 12.0 Hz, CH₂NH₂), 3.84 (1H, dd, $J=3.5$, 12.0 Hz, $CH₂NH₂$), 4.27 (1H, d, $J=2.5$ Hz, PhCH), 4.44 (1H, d, $J=15.0$ Hz, NCH₂Ph), 4.65 (1H, d, $J=15.0$ Hz, NCH₂Ph), 7.24–7.46 (10H, m, aromatic). MS, m/z : 267 (1, $[M+1]^+$), 236 (5), 133 (22), 105 (13), 91 (100%). Anal. Calcd for $C_{17}H_{18}N_2O$: C, 76.66; H, 6.81; N, 10.52. Found: C, 76.38; H, 7.02; N, 10.78.

4.4.10. trans-1-Benzyl-4-hydroxymethyl-3-methylazetidin-2-one (19). From aziridine cis -2b, β -lactam trans-19 was obtained [ethyl acetate 100%] as a sticky yellow liquid solidifying at 4° C in 84% yield; ¹H NMR (200 MHz): δ 1.30 $(3H, d, J=7.5 \text{ Hz}, CH_3CH), 1.73 \ (1H, br, OH), 3.06 \ (1H, dq,$ $J=2.0$, 7.5 Hz, CH₃CH), 3.26 (1H, ddd, $J=4.5$, 3.5, 2.0 Hz, CHCH₂OH), 3.62 (1H, dd, $J=12.0$, 4.5 Hz, CHCH₂OH), 3.72 (1H, dd, $J=12.0$, 3.5 Hz, CHCH₂OH), 4.38 (1H, d, $J=15.0$ Hz, CH_2Ph , 4.51 (1H, d, $J=15.0$ Hz, CH_2Ph), 7.28–7.44 (5H, m, aromatic); ¹³C NMR: δ 13.0, 45.3, 46.7, 61.1, 62.0, 128.1, 128.6, 129.1, 129.2, 136.7, 171.6. MS, m/z : 205 (2, M⁺), 133 (18), 132 (33), 118 (6), 105 (13), 91 (100), 72 (21), 65 (15), 57 (35%). Anal. Calcd for $C_{12}H_{15}NO_2$: C, 70.22; H, 7.37; N, 6.82. Found: C, 70.02; H, 7.28; N, 6.94.

4.4.11. trans-4-Acetoxymethyl-1-benzyl-3-methylazetidin-2-one (20) and trans-3-acetoxymethyl-1-benzyl-4-methylazetidin-2-one (21). From aziridine $cis-4b$, β -lactams trans-20 and trans-21 (86:14) were obtained [ethyl ether 100%] as a yellowish oily unresolvable mixture in 82% yield.

trans-20. ¹H NMR (400 MHz): δ 1.31 (3H, d, J=7.5 Hz, CH₃CH), 2.02 (3H, s, OCOCH₃), 3.02 (1H, dq, $J=2.0$, 7.5 Hz, CH₃CH), 3.31 (1H, ddd, $J=5.5$, 3.5, 2.0 Hz, $CHCH₂O$, 4.00 (1H, dd, J=12.0, 5.5 Hz, CHCH₂O), 4.18 $(1H, d, J=15.0 \text{ Hz}, CH_2Ph), 4.30 (1H, dd, J=12.0, 3.5 \text{ Hz},$ CHCH₂O), 4.63 (1H, d, J=15.0 Hz, CH₂Ph), 7.26–7.43 (5H, m, aromatic). MS, m/z : 219 (6, $[M-28]^+$), 205 (3), 192 (1), 187 (1), 174 (1), 160 (12), 133 (8), 132 (18), 114 (27), 105 (13), 104 (13), 91 (100), 72 (40%). Anal. Calcd for $C_{14}H_{17}NO_3$: C, 68.00; H, 6.93; N, 5.66. Found: C, 67.72; H, 7.26; N, 5.85.

trans-21. ¹H NMR (400 MHz): δ 1.31 (3H, d, J=7.5 Hz, CHCH₃), 2.02 (3H, s, OCOCH₃), 3.02 (1H, dq, $J=2.0$, 7.5 Hz, CHCH₃), 3.31 (1H, ddd, $J=6.0$, 3.5, 2.0 Hz, OCH₂CH), 4.03 (1H, d, J=15.0 Hz, CH₂Ph), 4.31 (1H, dd, $J=12.0$, 6.0 Hz, OCH₂CH), 4.39 (1H, dd, $J=12.0$, 3.5 Hz, OCH₂CH), 4.74 (1H, d, J=15.0 Hz, CH₂Ph), 7.26-7.43 (5H, m, aromatic). MS, m/z : 219 (1, $[M-28]^+$), 205 (1), 192 (1), 187 (1), 174 (1), 160 (10), 133 (10), 132 (25), 114 (88), 105 (15), 104 (14), 91 (100), 72 (62%). Anal. Calcd for $C_{14}H_{17}NO_3$: C, 68.00; H, 6.93; N, 5.66. Found: C, 68.23; H, 6.81; N, 5.89.

4.4.12. trans-4-Benzylamino-3-methyltetrahydrofuran-2-one (22). From trans-aziridine 2b, trans-lactone 22 was obtained [ethyl ether/ethyl acetate 50:50] as an amber sticky oil in 82% yield. ¹H NMR (200 MHz): δ 1.33 (3H, d, $J=7.0$ Hz, CH₃CH), 1.61 (1H, br, NHCH₂), 2.47 (1H, quintet, $J=7.5$ Hz, CH₃CH), 3.31 (1H, dt, $J=8.0$, 7.0 Hz, CHNH), 3.86 (2H, d, $J=2.5$ Hz, NHCH₂), 3.90 (1H, dd, $J=9.0$, 7.0 Hz, OCH₂), 4.39 (1H, dd, $J=9.0$, 6.5 Hz, OCH₂), 7.26-7.43 (5H, m, aromatic). MS, m/z : 205 (25, M^+), 190 (1), 149 (24), 132 (11), 120 (17), 118 (4), 91 (100), 77 (4), 65 (13%). Anal. Calcd for $C_{12}H_{15}NO_2$: C, 70.22; H, 7.37; N, 6.82. Found: C, 70.11; H, 7.43; N, 6.90.

4.4.13. trans-4-(tert-Butyldimethylsilyloxymethyl)-1 ethoxycarbonylmethyl-3-phenylazetidin-2-one (23). From aziridine cis-13, β -lactam trans-23 was obtained [light petroleum/ethyl ether 70:30] as a yellow sticky oil in 63% yield; ¹H NMR (400 MHz): δ 0.10 (3H, s, $t_{\rm BuMg}$ Si) 0.12 (3H s, $t_{\rm BuMg}$ Si) 0.13 (0H s, $t_{\rm BuMg}$ Si) BuMe₂Si), 0.12 (3H, s, 'BuMe₂Si), 0.93 (9H, s, 'BuMe₂Si), 1.33 (3H, t, $J=7.0$ Hz, COOCH₂CH₃), 3.88 (1H, dd, $J=11.5$, 7.5 Hz, CH₂O), 3.92 (1H, d, $J=18.0$ Hz, CH₂COOEt), 3.97–4.03 (2H, m, CHCH₂O and CHCH₂O), 4.05 (1H, d, J=2.5 Hz, PhCH), 4.26 (2H, q, J=7.0 Hz, COOCH₂CH₃), 4.42 (1H, d, $J=18.0$ Hz, CH₂COOEt), 7.30-7.41 (5H, m, aromatic). ¹³C NMR: δ -5.1, 14.6, 18.5, 26.1, 30.1, 30.7, 42.9, 57.6, 61.9, 62.5, 64.1, 128.0, 128.2, 129.2, 135.2, 168.7, 168.8. MS, m/z: 377 (2, M⁺), 320 (6), 304 (4), 248 (19), 244 (6), 202 (58), 191 (100), 117 (59), 115 (14), 75 (12), 73 (14%). Anal. Calcd for $C_{20}H_{31}NO_4Si$: C, 63.62; H, 8.28; N, 3.71. Found: C, 63.48; H, 8.07; N, 3.56.

Acknowledgements

The authors thank the Ministero della Università e della Ricerca Scientifica e Tecnologica (Rome) for financial support and the Centro Interdipartimentale Grandi Strumenti (Università di Modena e Reggio Emilia) for instrumental measurements.

References

- 1. Davoli, P.; Moretti, I.; Prati, F.; Alper, H. J. Org. Chem. 1999, 64, 518.
- 2. Piotti, E. M.; Alper, H. J. Am. Chem. Soc. 1996, 118, 111.
- 3. Fuji, K.; Kawabata, T.; Kiryu, Y.; Sugiura, Y. Tetrahedron Lett. 1990, 31, 6663.
- 4. Legters, J.; Thijs, L.; Zwanenburg, B. Recl. Trav. Chim. Pays-Bas 1992, 111, 1.
- 5. Chervin, I. I.; Fomichev, A. A.; Moskalenko, A. S.; Zaichenko, N. L.; Aliev, A. E.; Prosyanik, A. V.; Voznesenskii, V. N.; Kostyanovsky, R. G. Izv. Akad. Nauk SSSR, Ser. Khim. 1998, 1110.
- 6. The inversion energy barrier for compounds $1b-d$ ($\Delta G^{\#}$ 16– 17 kcal/mol) was calculated by ${}^{1}H$ DNMR technique as described in: Sandstrom, J. Dynamic NMR Spectroscopy; Academic: London, 1982.
- 7. Bucciarelli, M.; Forni, A.; Moretti, I.; Prati, F.; Torre, G. Tetrahedron: Asymmetry 1995, 6, 2073.
- 8. Mukerjee, A. K.; Singh, A. K. Tetrahedron 1978, 34, 1731.
- 9. Davoli, P.; Forni, A.; Franciosi, C.; Moretti, I.; Prati, F. Tetrahedron: Asymmetry 1999, 10, 2361.
- 10. Häner, R.; Olano, B.; Seebach, D. Helv. Chim. Acta 1987, 70, 1676.
- 11. Gastaminza, A. E.; Ferracutti, N. N.; Rodriguez, N. M. J. Org. Chem. 1984, 49, 3859. Buchta, E.; Burger, K. Liebigs Ann. Chem. 1952, 576, 155.
- 12. Michael, A. Berichte 1901, 24, 3640.
- 13. Andersson, P. G.; Guijarro, D.; Tanner, D. J. Org. Chem. 1997, 62, 736.